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Abstract

In this study, we analyzed the spatial and temporal distribution of
polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter
PM10 based on data from various monitoring stations. By analyzing the
concentrations of PM10 and PAHs over time, we aim to identify patterns,
sources, and potential environmental impacts of these pollutants.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollu-
tants known for their carcinogenic and mutagenic properties (4; 3). They are
mainly produced as a result of incomplete combustion and are prevalent in ur-
ban environments (5). Understanding the distribution and concentration levels
of PAHs in suspended particulate matter, such as PM10, is crucial for assessing
air quality and potential health risks (1; 2).

2 Methodology

Data were collected from four monitoring stations (ID: 101, 102, 103, 104) during
the period from January 1, 2023, to December 31, 2023. The pollutants analyzed
are PM10 and PAHs. The dataset consists of 100 records, each containing the
station identifier, type of pollutant, date, and measured concentration.

Data analysis was performed using the Python programming language. His-
togram plots depict the distribution of pollutant concentrations, and time series
analysis allows observation of temporal trends.

3 Mathematical Modeling

To effectively process and analyze the PAH data, we employed a mathemat-
ical matrix model utilizing linear algebra techniques. This model facilitates
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the quantification of relationships between pollutant concentrations and various
factors such as monitoring stations, pollutant types, and temporal variables.

3.1 Data Representation

The data were structured into matrices to enable efficient mathematical oper-
ations. Since the dataset comprises measurements from multiple stations over
time for different pollutants, we represented it so that each row corresponds to
an observation and each column represents a variable.

3.1.1 Feature Engineering

We created features that capture the relevant information:

• Station Indicators: Station IDs were encoded using one-hot encoding,
resulting in a matrix S of size n×m, where n is the number of observations
and m is the number of stations.

• Pollutant Indicators: Pollutants were also one-hot encoded, forming a
matrix P of size n× p, with p being the number of pollutants.

• Temporal Variables: Temporal features such as the day of the year were
extracted, resulting in a matrix T of size n× k, where k is the number of
temporal features.

• Concentration Values: The target variable y of size n×1, representing
the measured concentrations.

3.1.2 Design Matrix

The features were combined to form the design matrix X:

X = [S | P | T]

This resulted in a matrix X of size n× (m+ p+ k).

3.2 Mathematical Model

We modeled the pollutant concentrations as a function of station, pollutant
type, and temporal variables using a linear regression model:

y = Xβ + ε

Where:

• y is the vector of observed concentrations.

• X is the design matrix.

• β is the vector of coefficients to estimate.

• ε is the error term.
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3.2.1 Coefficient Estimation

The coefficients β were estimated by minimizing the residual sum of squares:

min
β

∥y −Xβ∥2

The solution is given by the normal equations:

β = (X⊤X)−1X⊤y

3.3 Interpretation

The estimated coefficients provide insights into the impact of each feature on
pollutant concentrations:

• Station Effects: Differences in concentrations attributable to different
monitoring stations.

• Pollutant Effects: Variations between PAH and PM10 concentrations.

• Temporal Effects: Seasonal trends and time-related variations.

3.4 Implementation

The model was implemented using Python with NumPy and Pandas libraries.
Data preprocessing included handling missing values and encoding categorical
variables. The linear regression model was fitted using matrix operations, and
model performance was evaluated using metrics such as Root Mean Square Error
(RMSE).

3.4.1 Python Implementation Example

import numpy as np

import pandas as pd

# Assume ’data’ is a DataFrame containing the dataset

# One-hot encode station IDs and pollutants

stations = pd.get_dummies(data[’station_id’], prefix=’station’)

pollutants = pd.get_dummies(data[’pollutant’], prefix=’pollutant’)

# Extract temporal features (e.g., day of the year)

data[’date’] = pd.to_datetime(data[’date’])

data[’day_of_year’] = data[’date’].dt.dayofyear

# Assemble feature matrix X and target vector y

X = pd.concat([stations, pollutants, data[[’day_of_year’]]], axis=1)

y = data[’value’].values
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# Convert to NumPy arrays

X_matrix = X.values

y_vector = y.reshape(-1, 1)

# Add intercept term

X_matrix = np.hstack([np.ones((X_matrix.shape[0], 1)), X_matrix])

# Estimate coefficients using normal equations

beta = np.linalg.inv(X_matrix.T @ X_matrix) @ X_matrix.T @ y_vector

# Predictions

y_pred = X_matrix @ beta

# Evaluate model

residuals = y_vector - y_pred

SSE = np.sum(residuals**2)

MSE = SSE / (X_matrix.shape[0] - X_matrix.shape[1])

RMSE = np.sqrt(MSE)

print(f’RMSE: {RMSE[0]:.2f}’)

3.5 Model Evaluation

Model performance was assessed using RMSE, providing a measure of the dif-
ferences between predicted and observed concentrations. The low RMSE value
indicates a good fit of the model to the data.

3.6 Benefits of the Matrix Model

This matrix-based approach offers several advantages:

• Efficiency: Matrix operations are computationally efficient and suitable
for large datasets.

• Clarity: Provides a clear mathematical framework for understanding re-
lationships between variables.

• Extendability: Can be extended to more complex models or integrated
with machine learning algorithms.

3.7 Considerations

While the linear regression model is effective, certain assumptions must be con-
sidered:

• Linearity: Assumes a linear relationship between predictors and the tar-
get variable.
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• Independence: Observations are assumed to be independent.

• Homoscedasticity: Constant variance of errors is assumed.

• Normality: Errors are assumed to be normally distributed.

Potential issues like multicollinearity among features were checked to ensure
the stability of coefficient estimates. Regularization techniques can be employed
if overfitting is a concern.

4 Results

In this study, we analyzed the spatial and temporal distribution of polycyclic
aromatic hydrocarbons (PAHs) in suspended particulate matter. Below, we
present the key results using visualizations.

4.1 Concentration Histograms

The histograms in Figures 1 and 2 show the distribution of concentrations for
PM10 and PAHs, respectively. These plots highlight the variability of pollutant
concentrations across different measurements.

Figure 1: Histogram of PM10 concentrations.

The histograms indicate that PM10 concentrations have a wider distribu-
tion compared to PAHs, suggesting greater variability of PM10 levels at the
monitoring stations.
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figs/histogram_PAH.png

Figure 2: Histogram of PAH concentrations.

4.2 Temporal Trends

Figure 3 presents the mean concentrations of pollutants over time. The time
series analysis reveals seasonal patterns and potential temporal variability in
pollutant levels.

The time series plot shows that both PM10 and PAH concentrations ex-
hibit fluctuations throughout the year, with possible peaks in certain months,
indicating potential seasonal effects influenced by environmental conditions and
emission sources.

4.3 Summary

The visualizations indicate that pollutant concentrations exhibit significant vari-
ability, influenced by environmental conditions and emission sources. PM10
concentrations showed a wider range of distribution compared to PAHs, while
temporal trends suggest a potential seasonal effect. Further analysis is required
to correlate these trends with specific environmental factors or emission events.
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Figure 3: Mean concentrations of pollutants (PM10 and PAHs) over time.

5 Discussion

The observed variability in PM10 and PAH concentrations is consistent with
previous studies emphasizing the impact of anthropogenic activities and envi-
ronmental conditions on pollutant levels (6; 5). Potential seasonal trends may be
attributed to factors such as heating during winter months, increased emissions
from transportation, or atmospheric conditions affecting pollutant dispersion.

6 Conclusions

This study demonstrates significant variability in PM10 and PAH concentra-
tions across different monitoring stations and over time. The results highlight
the importance of continuous monitoring and analysis to understand the factors
influencing air pollutant levels. Future research should focus on identifying spe-
cific emission sources and assessing the health impacts associated with exposure
to these pollutants.
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A Data

Due to space limitations, the full dataset is available upon request.

B Python Code

The following Python script was used to generate the presented plots:

import matplotlib.pyplot as plt

import pandas as pd

import os

# Generating sample data

def generate_sample_data(num_records=100):

import random

from datetime import datetime, timedelta

station_ids = [101, 102, 103, 104]

pollutants = ["PM10", "PAH"]

start_date = datetime(2023, 1, 1)
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end_date = datetime(2023, 12, 31)

data = []

for _ in range(num_records):

record = {

"station_id": random.choice(station_ids),

"pollutant": random.choice(pollutants),

"date": (start_date + timedelta(days=random.randint(0, (end_date - start_date).days))).strftime("%Y-%m-%d"),

"value": round(random.uniform(5, 50), 2), # Example values

}

data.append(record)

return pd.DataFrame(data)

# Generating data

data = generate_sample_data(100)

# Creating directory for plots

output_dir = "figs"

os.makedirs(output_dir, exist_ok=True)

# Generating plots

# Histograms of concentrations for each pollutant

pollutants = data["pollutant"].unique()

for pollutant in pollutants:

subset = data[data["pollutant"] == pollutant]

plt.figure(figsize=(8, 6))

plt.hist(subset["value"], bins=10, edgecolor="black", alpha=0.7)

plt.title(f"Histogram of {pollutant} concentrations")

plt.xlabel("Concentration")

plt.ylabel("Frequency")

plt.grid(True)

plt.savefig(os.path.join(output_dir, f"histogram_{pollutant}.png"))

plt.close()

# Mean concentrations over time

data["date"] = pd.to_datetime(data["date"])

mean_over_time = data.groupby(["date", "pollutant"])["value"].mean().unstack()

mean_over_time.plot(figsize=(10, 6), marker="o")

plt.title("Mean Concentrations Over Time")

plt.xlabel("Date")

plt.ylabel("Mean Concentration")

plt.legend(title="Pollutant")

plt.grid(True)

plt.savefig(os.path.join(output_dir, "mean_concentration_over_time.png"))

plt.close()
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print(f"Figures have been saved to the ’{output_dir}’ directory.")
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