
Documentation of 1-Bit Full Adder in Verilog

Class 1i

Contents

1 Introduction 2

2 Module Description 2
2.1 Inputs and Outputs . 2

3 Operation 2
3.1 Truth Table . 3

4 Implementation 3

5 Parameterization 3

6 Compilation and Synthesis Instructions 4

7 Testing 5

8 Conclusion 5

1

1 Introduction

This document provides a detailed description of the 1-bit full adder module
implemented in Verilog. A full adder is a digital circuit that performs the ad-
dition of binary numbers. In this design, the module takes three inputs: two
single-bit binary values, a and b, and a carry-in bit, carry in. It produces
two outputs: the sum (sum) and a carry-out bit (carry out).

Installing Yosys and nextpnr from Source

Yosys and nextpnr are open-source tools for digital synthesis and place-and-
route. The following steps guide you through building and installing these
tools from source.

Yosys Installation

1. Clone the Yosys repository: Begin by cloning the Yosys repository
from GitHub.

git clone https://github.com/YosysHQ/yosys.git

2. Install dependencies: Make sure all necessary dependencies are in-
stalled by running:

sudo apt-get install build-essential clang lld bison flex \

libreadline-dev gawk tcl-dev libffi-dev git \

graphviz xdot pkg-config python3 libboost-system-dev \

libboost-python-dev libboost-filesystem-dev zlib1g-dev

3. Configure Yosys to use Clang: In the Yosys directory, configure it
to use the Clang compiler.

make config-clang

4. Initialize submodules: Make sure all Git submodules are up to date.

git submodule update --init

2

5. Build Yosys: Compile Yosys using multiple threads.

make -j32

6. Install Yosys: After the build is complete, install Yosys system-wide.

sudo make install

nextpnr Installation

1. Navigate back to the parent directory:

cd ../

2. Clone the nextpnr repository: Download the nextpnr repository
from GitHub.

git clone https://github.com/YosysHQ/nextpnr

3. Install cmake: Install cmake, which is required to build nextpnr.

sudo apt install cmake

4. Configure nextpnr for the iCE40 architecture: In the nextpnr
directory, run cmake with the iCE40 architecture option.

cmake . -DARCH=ice40

5. Build nextpnr: Compile nextpnr using all available processor cores.

make -j$(nproc)

6. Install nextpnr: Once the build completes, install nextpnr system-
wide.

sudo make install

3

Verification

After installing Yosys and nextpnr, verify the installation by running:

yosys -V

nextpnr-ice40 --help

These commands should display version or help information, confirming that
the tools are correctly installed.

2 Module Description

The 1-bit full adder module is defined in Verilog using the following interface:

module full_adder (

input wire a, // Input A

input wire b, // Input B

input wire carry_in, // Carry-in

output wire sum, // Sum output

output wire carry_out // Carry-out

);

2.1 Inputs and Outputs

• Input a: The first binary input (single bit).

• Input b: The second binary input (single bit).

• Input carry in: The carry-in bit, representing any carry from the
previous addition stage.

• Output sum: The sum result of inputs a, b, and carry in.

• Output carry out: The carry-out result, which is passed to the next
stage if multiple bits are added.

3 Operation

The 1-bit full adder performs binary addition using the logic operations XOR,
AND, and OR. The outputs are calculated as follows:

sum = a⊕ b⊕ carry in

carry out = (a ∧ b) ∨ (carry in ∧ (a⊕ b))

4

3.1 Truth Table

The truth table for the 1-bit full adder is shown below:

a b carry in sum carry out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

4 Implementation

The Verilog implementation of the full adder uses logical operations to com-
pute the sum and carry-out as shown below:

module full_adder (

input wire a,

input wire b,

input wire carry_in,

output wire sum,

output wire carry_out

);

assign sum = a ^ b ^ carry_in;

assign carry_out = (a & b) | (carry_in & (a ^ b));

endmodule

5 Parameterization

To make this module more versatile, we can parameterize it to allow the user
to define different bit widths. Here is an example of a parameterized full
adder that allows for a multi-bit input:

module full_adder #(

parameter WIDTH = 1

) (

input wire [WIDTH-1:0] a,

input wire [WIDTH-1:0] b,

5

input wire carry_in,

output wire [WIDTH-1:0] sum,

output wire carry_out

);

assign {carry_out, sum} = a + b + carry_in;

endmodule

In this parameterized version, WIDTH is a parameter that specifies the
number of bits. The module can handle inputs of any width by changing the
WIDTH value when instantiating the module.

6 Compilation and Synthesis Instructions

To compile and synthesize the Verilog code for the iCEBreaker FPGA, follow
these steps:

1. **Save the Verilog file**: Save the Verilog code as sum.v and the pin
configuration as sum.pcf.

2. **Synthesize with Yosys**:

yosys -p "synth_ice40 -top full_adder -json sum.json" sum.v

This command synthesizes the Verilog code for the iCE40 FPGA ar-
chitecture and outputs a JSON netlist.

3. **Place and route with nextpnr**:

nextpnr-ice40 --up5k --package sg48 --pcf sum.pcf --json sum.json --asc sum.asc

This command places and routes the design for the UP5K model of the
iCE40 FPGA.

4. **Generate a binary file with icepack**:

icepack sum.asc sum.bin

This converts the ASCII file (.asc) to a binary file (.bin) for program-
ming the FPGA.

6

5. **Program the FPGA with iceprog**:

iceprog sum.bin

This command uploads the binary file to the iCEBreaker FPGA board.

7 Testing

To verify the correctness of the full adder, the module can be tested with all
combinations of inputs (as shown in the truth table) to ensure that the sum
and carry-out values are produced correctly. A testbench in Verilog can be
created to apply these inputs and observe the outputs.

8 Conclusion

This document provides a detailed overview of the 1-bit full adder module
implemented in Verilog, including its interface, operation, and logic. This
module is fundamental in digital systems, especially for implementing multi-
bit adders and arithmetic operations in larger circuits.

7

	Introduction
	Module Description
	Inputs and Outputs

	Operation
	Truth Table

	Implementation
	Parameterization
	Compilation and Synthesis Instructions
	Testing
	Conclusion

