init
This commit is contained in:
commit
03882bec1a
Binary file not shown.
|
@ -0,0 +1,142 @@
|
|||
\documentclass[a4paper,12pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\title{Documentation of 1-Bit Full Adder in Verilog}
|
||||
\author{Class 1i}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\tableofcontents
|
||||
\newpage
|
||||
|
||||
\section{Introduction}
|
||||
This document provides a detailed description of the 1-bit full adder module implemented in Verilog. A full adder is a digital circuit that performs the addition of binary numbers. In this design, the module takes three inputs: two single-bit binary values, \texttt{a} and \texttt{b}, and a carry-in bit, \texttt{carry\_in}. It produces two outputs: the sum (\texttt{sum}) and a carry-out bit (\texttt{carry\_out}).
|
||||
|
||||
\section{Module Description}
|
||||
The 1-bit full adder module is defined in Verilog using the following interface:
|
||||
|
||||
\begin{verbatim}
|
||||
module full_adder (
|
||||
input wire a, // Input A
|
||||
input wire b, // Input B
|
||||
input wire carry_in, // Carry-in
|
||||
output wire sum, // Sum output
|
||||
output wire carry_out // Carry-out
|
||||
);
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Inputs and Outputs}
|
||||
\begin{itemize}
|
||||
\item \textbf{Input a}: The first binary input (single bit).
|
||||
\item \textbf{Input b}: The second binary input (single bit).
|
||||
\item \textbf{Input carry\_in}: The carry-in bit, representing any carry from the previous addition stage.
|
||||
\item \textbf{Output sum}: The sum result of inputs \texttt{a}, \texttt{b}, and \texttt{carry\_in}.
|
||||
\item \textbf{Output carry\_out}: The carry-out result, which is passed to the next stage if multiple bits are added.
|
||||
\end{itemize}
|
||||
|
||||
\section{Operation}
|
||||
The 1-bit full adder performs binary addition using the logic operations XOR, AND, and OR. The outputs are calculated as follows:
|
||||
|
||||
\begin{align*}
|
||||
\text{sum} &= a \oplus b \oplus \text{carry\_in} \\
|
||||
\text{carry\_out} &= (a \land b) \lor (\text{carry\_in} \land (a \oplus b))
|
||||
\end{align*}
|
||||
|
||||
\subsection{Truth Table}
|
||||
The truth table for the 1-bit full adder is shown below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|c|}
|
||||
\hline
|
||||
\textbf{a} & \textbf{b} & \textbf{carry\_in} & \textbf{sum} & \textbf{carry\_out} \\
|
||||
\hline
|
||||
0 & 0 & 0 & 0 & 0 \\
|
||||
0 & 0 & 1 & 1 & 0 \\
|
||||
0 & 1 & 0 & 1 & 0 \\
|
||||
0 & 1 & 1 & 0 & 1 \\
|
||||
1 & 0 & 0 & 1 & 0 \\
|
||||
1 & 0 & 1 & 0 & 1 \\
|
||||
1 & 1 & 0 & 0 & 1 \\
|
||||
1 & 1 & 1 & 1 & 1 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\section{Implementation}
|
||||
The Verilog implementation of the full adder uses logical operations to compute the sum and carry-out as shown below:
|
||||
|
||||
\begin{verbatim}
|
||||
module full_adder (
|
||||
input wire a,
|
||||
input wire b,
|
||||
input wire carry_in,
|
||||
output wire sum,
|
||||
output wire carry_out
|
||||
);
|
||||
assign sum = a ^ b ^ carry_in;
|
||||
assign carry_out = (a & b) | (carry_in & (a ^ b));
|
||||
endmodule
|
||||
\end{verbatim}
|
||||
|
||||
\section{Parameterization}
|
||||
To make this module more versatile, we can parameterize it to allow the user to define different bit widths. Here is an example of a parameterized full adder that allows for a multi-bit input:
|
||||
|
||||
\begin{verbatim}
|
||||
module full_adder #(
|
||||
parameter WIDTH = 1
|
||||
) (
|
||||
input wire [WIDTH-1:0] a,
|
||||
input wire [WIDTH-1:0] b,
|
||||
input wire carry_in,
|
||||
output wire [WIDTH-1:0] sum,
|
||||
output wire carry_out
|
||||
);
|
||||
assign {carry_out, sum} = a + b + carry_in;
|
||||
endmodule
|
||||
\end{verbatim}
|
||||
|
||||
In this parameterized version, \texttt{WIDTH} is a parameter that specifies the number of bits. The module can handle inputs of any width by changing the \texttt{WIDTH} value when instantiating the module.
|
||||
|
||||
\section{Compilation and Synthesis Instructions}
|
||||
To compile and synthesize the Verilog code for the iCEBreaker FPGA, follow these steps:
|
||||
|
||||
\begin{enumerate}
|
||||
\item **Save the Verilog file**: Save the Verilog code as \texttt{sum.v} and the pin configuration as \texttt{sum.pcf}.
|
||||
\item **Synthesize with Yosys**:
|
||||
\begin{verbatim}
|
||||
yosys -p "synth_ice40 -top full_adder -json sum.json" sum.v
|
||||
\end{verbatim}
|
||||
This command synthesizes the Verilog code for the iCE40 FPGA architecture and outputs a JSON netlist.
|
||||
|
||||
\item **Place and route with nextpnr**:
|
||||
\begin{verbatim}
|
||||
nextpnr-ice40 --up5k --package sg48 --pcf sum.pcf --json sum.json --asc sum.asc
|
||||
\end{verbatim}
|
||||
This command places and routes the design for the UP5K model of the iCE40 FPGA.
|
||||
|
||||
\item **Generate a binary file with icepack**:
|
||||
\begin{verbatim}
|
||||
icepack sum.asc sum.bin
|
||||
\end{verbatim}
|
||||
This converts the ASCII file (\texttt{.asc}) to a binary file (\texttt{.bin}) for programming the FPGA.
|
||||
|
||||
\item **Program the FPGA with iceprog**:
|
||||
\begin{verbatim}
|
||||
iceprog sum.bin
|
||||
\end{verbatim}
|
||||
This command uploads the binary file to the iCEBreaker FPGA board.
|
||||
\end{enumerate}
|
||||
|
||||
\section{Testing}
|
||||
To verify the correctness of the full adder, the module can be tested with all combinations of inputs (as shown in the truth table) to ensure that the sum and carry-out values are produced correctly. A testbench in Verilog can be created to apply these inputs and observe the outputs.
|
||||
|
||||
\section{Conclusion}
|
||||
This document provides a detailed overview of the 1-bit full adder module implemented in Verilog, including its interface, operation, and logic. This module is fundamental in digital systems, especially for implementing multi-bit adders and arithmetic operations in larger circuits.
|
||||
|
||||
\end{document}
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
set_io a 12 # Przycisk A (Button 3)
|
||||
set_io b 11 # Przycisk B (Button 2)
|
||||
set_io carry_in 10 # Przycisk Carry-in (Button 1)
|
||||
|
||||
set_io sum 39 # Wyjście suma na diodzie L1
|
||||
set_io carry_out 40 # Wyjście carry-out na diodzie L2
|
||||
set_io l3 41 # Dioda L3 dla wejścia B
|
||||
set_io l4 42 # Dioda L4 dla carry_in
|
||||
set_io l5 37 # Dioda L5 dla wejścia A
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
module full_adder (
|
||||
input wire a, // Wejście A (przycisk)
|
||||
input wire b, // Wejście B (przycisk)
|
||||
input wire carry_in, // Wejście przeniesienia (przycisk)
|
||||
output wire sum, // Wyjście suma (dioda)
|
||||
output wire carry_out, // Wyjście przeniesienia (dioda)
|
||||
output wire l3, // L3 dla B
|
||||
output wire l4, // L4 dla carry_in
|
||||
output wire l5 // L5 dla A
|
||||
);
|
||||
|
||||
assign sum = a ^ b ^ carry_in; // Obliczenie sumy
|
||||
assign carry_out = (a & b) | (carry_in & (a ^ b)); // Obliczenie przeniesienia
|
||||
assign l5 = a; // L5 pokazuje stan A
|
||||
assign l3 = b; // L3 pokazuje stan B
|
||||
assign l4 = carry_in; // L4 pokazuje stan carry_in
|
||||
|
||||
endmodule
|
||||
|
Loading…
Reference in New Issue